用Python实现深度学习框架在线阅读

用Python实现深度学习框架

张觉非 陈震

计算机网络 / 编程语言与程序设计 · 13.6万字

本书带领读者用原生Python语言和Numpy线性代数库实现一个基于计算图的深度学习框架MatrixSlow(类似简易版的PyTorch、TensorFlow或Caffe)。全书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理,比如模型、计算图、训练、梯度下降法及其各种变体。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题。第三部分是工程篇,讨论了一些与深度学习框架相关的工程问题,内容涉及训练与评估,模型的保存、导入和服务部署,分布式训练,等等。

品牌:人邮图书

出版社:人民邮电出版社

本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行

本书是精排版书籍

可在QQ阅读APP阅读本书